Textual Signs Reading for Indoor Semantic Map Construction
نویسندگان
چکیده
منابع مشابه
Aligning Semantic Graphs for Textual Inference and Machine Reading
This paper presents our work on textual inference and situates it within the context of the larger goals of machine reading. The textual inference task is to determine if the meaning of one text can be inferred from the meaning of another and from background knowledge. Our system generates semantic graphs as a representation of the meaning of a text. This paper presents new results for aligning...
متن کاملDense 3D Map Construction for Indoor Search and Rescue
The main contribution of this paper is a new Simultaneous Localization and Mapping (SLAM) algorithm for building dense three-dimensional maps using information acquired from a range imager and a conventional camera, for robotic search and rescue in unstructured indoor environments. A key challenge in this scenario is that the robot moves in 6D and no odometry information is available. An Extend...
متن کاملSemantic Map Building Based on Object Detection for Indoor Navigation
Building a map of the environment is a prerequisite for mobile robot navigation. In this paper, we present a semantic map building method for indoor navigation of a robot using only the image sequence acquired by a mon‐ ocular camera installed on the robot. First, a topological map of the environment is created, where each key frame forms a node of the map represented as visual words (VWs). The...
متن کاملSemantic Parsing for Textual Entailment
In this paper we gauge the utility of general-purpose, open-domain semantic parsing for textual entailment recognition by combining graph-structured meaning representations with semantic technologies and formal reasoning tools. Our approach achieves high precision, and in two case studies we show that when reasoning over n-best analyses from the parser the performance of our system reaches stat...
متن کاملSemantic Methods for Textual Entailment
The problem of recognizing textual entailment (RTE) has been recently addressed using syntactic and lexical models with some success. Here, a new approach is taken to apply world knowledge in much the same way as humans, but captured in large semantic graphs such as WordNet. We show that semantic graphs made of synsets and selected relationships between them enable fairly simple methods that pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2012
ISSN: 0975-8887
DOI: 10.5120/8459-2268